栏目导航
纽约大学医学院运用语音分析技术 开发创伤后压
发表时间:2019-06-08

  据NYU Langone Health报导,PTSD的患者在遭逢触发事件时会经历强烈而持续的精神紧张症状,全球逾70%的成年人一生中曾经历创伤事件,而部分艰困国家中的人民约12%正苦于PTSD。最常使用的诊断方式是透过临床面谈或自陈式(self-report)评估,不过两者的结果都易受成见影响,因此必须找出可衡量、客观、实际的PTSD发展指标,但迄今进展缓慢。

  语音工具可提供非侵入式、低成本、可远距操作等优势,因此非常适合用于自动化诊断系统,例如集成至诊断PTSD的智能型手机App。NYU医学院发表的研究并未探究导致PTSD的成因与机制,而是基于创伤事件会改变人脑控制情绪与肌肉张力的回路,进而影响其语音特征的理论,来开发PTSD临床诊断AI工具。

  运用随机森林算法发展的AI程序,能够基于实例学习处理个体分类,所建立的决策规则与数学模式,可随训练资料量增加而强化决策准确性。较不清晰的谈话、没有生气且刺耳的语调,长久以来即被视为有助于辨识与诊断PTSD,NYU医学院的研究团开发的随机森林程序可为特定语音特征模式与PTSD症状建立连结作为诊断依据。

  研究人员首先录制数小时包括53名在服役时罹患PTSD症状与78名无PTSD症状的伊拉克与阿富汗的标准诊断面谈,作为临床医师施行的PTSD衡量标准(Clinician-Administered PTSD Scale;CAPS),接著将其输入结合随机森林与SRI International语音技术的AI软件,从诊断面谈中筛选出各种模式,共计撷取出40,526个语音相关的特征。

  苹果(Apple)的 Siri是由SRI International所开发,NYU医学院研究团队的AI PTSD诊断工具运用的语音分析技术,即是SRI International的语音分析平台SenSay Analytics的部分功能。未来NYU医学院研究团队计画用更多资料训练AI语音工具以强化其功能,并进一步以独立的样本进行功能验证,最终将向美国政府申请批准应用于医疗院所的临床实际病例。

  SenSay Analytics语音分析平台分析语词时会结合语音的频率、韵律、声调,以及发音的特征以推断说话者的沟通质量、认知、情绪、生理与心理健康、情绪等状态,相关技术已被Ambit、Decoded Health、Oto等新创应用于各种产业应用。NYU的研究团队成员包括NYU医学院的教授、NYU精神医学系与SRI International的研究人员。

 

友情链接:
Copyright 2018-2021 主页 版权所有,未经授权,禁止转载。